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Surface tension measurements of liquid 
metals by the oscillating drop technique 

I. EG R Y  
Institute for Space Simulation, German Aerospace Research Establishment, 
5000 KOIn-90, FRG 

An improved method for measuring the surface tension of liquid metals is proposed. Surface 
oscillations of an electromagnetically levitated liquid metal droplet are observed by a video 
camera and digital image processing is used to evaluate the spectrum of oscillations. A 
discussion of the theoretical background and a description of the experimental apparatus are 
presented. In addition, preliminary results on an FeNi sample, and an outlook for future 
experiments, including the measurement of viscosity, are given. 

1. I n t r o d u c t i o n  
The surface tension of liquid metals is a technolo- 
gically important and scientifically interesting para- 
meter. It dominates many metallurgical processes, 
such as casting, welding and melt spinning. A first 
principles calculation of the surface tension would 
require a microscopic model of the liquid state, includ- 
ing density and free-energy profiles at the surface. 
Such theories exist at present only for very simple 
systems [1]. Experimentally, there is a large scatter 
between available data. This can be attributed to 
contamination of the surface, in particular by oxygen. 
Earlier work is reviewed by Allen [2], while more 
recently a review for iron and its binary alloys has 
been ~iven by Keene [3]. 

Conventionally, surface tension measurements are 
carried out using the sessile-drop or pendant-drop 
techniques [4]; these techniques determine the non- 
spherical equilibrium shapes of drops due to surface 
tension and gravity. The inherent difficulties of this 
method are discussed by Sangiorgi et al. [-5]. An 
alternative approach to surface tension measurements 
is the oscillating drop technique using electromagnetic 
levitation. This method avoids any contact with a 
crucible and thus reduces not only systematic errors 
due to surface contamination but also allows deep 
undercooling of the liquid metal [6]. The restoring 
force for surface oscillations is the surface tension, 
which therefore can be related to the frequency of the 
oscillations [ 7]. 

Electromagnetic levitation can be improved further 
by utilizing the microgravity environment on 
board an orbiting spacecraft. The residual accelera- 
tion is of the order of ~ 10-3go-10-Sg o where 
go = 9.81 m s -2. Accordingly, much lower electromag- 
netic fields are necessary. This has essentially two 
consequences: first, the induced currents in the sample 
are reduced, leading to less power dissipation and 
weaker stirring effects; second, the magnetic "pres- 
sure" on the sample surface is reduced, and third, the 
sample remains essentially spherical. The magnetic 
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pressure leads to an apparent increase in the surface 
tension, which is usually neglected and a spherical 
shape greatly facilitates the oscillation analysis. Based 
on these considerations, we have proposed a micro- 
gravity experiment for measuring surface tension and 
viscosity of undercooled metallic melts [8]. 

Terrestrial measurements using the oscillating drop 
technique have been first carried out by Fraser et  al. 

[9] and, more recently, by Schade et al. [10] and 
Keene et  al. [I 1]. Fraser et  al. used high-speed cine- 
matography for recording the surface oscillations, 
while the latter used a photodetector which records 
the incoming (oscillating) light intensity. Upon ana- 
logue/digital-conversion, the signal can be analysed by 
fast Fourier transformation (FFT); this facilitates the 
experimental evaluation considerably, compared to 
the tedious manual and visual analysis of the photo- 
graphs of Fraser et  al. However, there is a short- 
coming in this technique: because the intensity is an 
integrated signal, information is lost about the actual 
type of oscillation. This becomes a serious problem, if, 
as is usually the case, there is more than one oscil- 
lation frequency. In order to attribute the measured 
frequencies to the corresponding normal modes, some 
information about the actual shape of the oscillating 
drop is required. Slits in front of the detector act as a 
filter for certain oscillatory modes and can be used to 
suppress their contribution to the signal. 

In this paper we present another solution to this 
problem, which in a sense can be regarded as the 
combination of the two above mentioned methods: we 
record the oscillations by a suitable video cam- 
era and use subsequent digital image processing. The 
recorded frames contain the full two-dimensional 
image from which the desired information can be 
extracted. Liggieri and Passerone [12] have also ap- 
plied automatic digital image processing routines for 
measuring the surface tension of liquid metals. They 
employed the sessile drop technique and analyse static 
images. In their approach, the spatial resolution of the 
video camera is the limiting factor, whereas for the 
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oscillating drop technique the temporal resolution is 
crucial. 

We were able to apply our image processing scheme 
to video images which were taken during preliminary 
performance tests of an electromagnetic microgravity 
levitation facility on board a KC-135 aircraft. Al- 
though these tests  were not intended for scientific 
experiments and, accordingly, the conditions were far 
from optimal, the analysis yielded surprisingly good 
results for the surface tension of an FeNi sample. 

2. Theory 
2.1. Levitation 
An inhomogeneous, alternating electromagnetic field 
has two effects on a conducting, diamagnetic body: 
firstly, it induces eddy currents within the material, 
which, due to ohmic losses, eventually heat up the 
sample (inductive heating), and secondly, it exerts a 
force on the body pushing it towards regions of lower 
field strength (Lorentz force), The latter effect can be 
used to compensate the gravitational force acting on 
the body. This is the principle of levitation melting, as 
first formulated by Okress e t  al. [13]. 

More explicitly, the power, P, absorbed by a sample 
of volume, Iv, averaged over a time, ,, is given by 

e 

where ~ is the electrical conductivity of the sample 
and Jina the induced current. 
For a homogeneous magnetic field, B, an approximate 
analytical expression can be given for a spherical 
sample of radius, R, 

3=R 
P - 6po2 H(q) B 2 (2) 

where 

H ( q )  = 

sin h(2q) + sin (2q) 
- 1 q = R / 8  

q cosh(2q) - cos(2q) 
(3) 

The quantity of interest in this expression is 8, the skin 
depth. It is given by 

( 2 " ]  1/2 
8 = - -  (4) 

\m6po / 

where m is the angular frequency of the electromag- 
netic field. For frequencies in the megahertz range, the 
skin depth is ~ 0.1 mm for most metals. The heating 
efficiency has a maximum for q ~ 2 and can, in prin- 
ciple, be optimized for a given conductivity by select- 
ing the appropriate frequency. A more detailed treat- 
ment can be found in [14]. 
The time-averaged force acting on a conducting 
sample can be calculated from 

'flf  F = - j x B d V d t  (5) 

For a weakly non-homogeneous magnetic field, the 
following expression can be derived 

rcR 3 
F - G ( q ) V B  2 (6) 

Po 
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where: 

3 sin h(2q) - sin(2q) 
G(q) - 1 - 2q cosh(2q) - cos(2q) (7) 

As can be seen, an inhomogeneous field pushes the 
sample into regions of low magnetic field strength. 
The force increases with increasing conductivity. 

If a quadrupole field as shown in Fig. 1 is applied, it 
compensates not only gravitational forces, but also 
stabilizes the sample against vertical and lateral dis- 
placements from its equilibrium position. In first 
order, the equation of motion for the centre of mass 
of the sample is that of an harmonic oscillator with a 
frequency 

l ( k ~ 1/2 
v = k ~ V F  (8)  

where M is the mass of the sample. For metal spheres 
with R ~ 5 ram, v is usually in the order of 3-5 Hz. 

Forces acting on a liquid sample inevitably deform 
its shape. This is true for both the gravitational and 
the electromagnetic force. Calculations of the equilib- 
rium shape are given by Gagnoud [15] and Cum- 
mings and Blackburn [16]. As we will see in the next 
section, any non-sphericity introduces complications 
into the spectrum of oscillations and should therefore 
be avoided. As mentioned before, this is one reason 
for carrying out such experiments under microgravity 
conditions. 

2.2. Drop osci l la t ions  
Surface tension and viscosity can be measured by 
exciting surface oscillations of a levitated drop. 
The frequency, m, of the oscillations is related to 
the surface tension, o, while the damping, 7, yields 
the viscosity, q. The theory of oscillations of a liquid 
drop is a classical problem in hydrodynamics and 
has been treated to several degrees of sophistication. 

' l  

-2'.o 1.o o'.o ,.o 
Verticol dlstance from the equotoriol plon% Z/M* 10 -2 

Figure 1 The quadrupole field used to position and stabilize a 
metallic drop. Also shown are the heating and positioning coils. 



The radius of a spherical droplet [7] undergoes 
oscillations of the form 

R l ~ cos (rod)e- Y'~P~(cos 0) (9) 

where t is the time and 0 is the angle with respect to 
the symmetry axis, l is the index of the normal mode 
and P~ is a Legendre polynomial. 

In the linearized theory, frequency, co l, and damp- 
ing, 7~, are given by 

o h = [l(l  - 1)(l + 2)cy/(oR~)] ~/2 (10) 

Tz = (l - 1)(21 + I)O/(pR 2) (11) 

where R o is the unperturbed radius and 9 is the 
density of the sphere. The fundamental mode is 1 = 2. 

For this mode, Cummings and Blackburn [16] have 
calculated the effect of asphericity, gravity, magnetic 
field and sample rotation on the frequency for an 
inviscid drop. The main result of their calculation is 
that the frequency of the fundamental l = 2-mode is 
split into upto five sidebands, or, to put it in quantum- 
mechanical terms, the five-fold degeneracy of l = 2 is 
lifted. This is due to the fact that Equation 9 is not the 
most general solution for aspherical drops. Allowing 
for azimuthal dependence of the radius, it is given by 
spherical harmonics 

Rl,m "" cos(ml,mt)e-v';PT' (cos 0) cos Ira(q) -- q0o) ] 

(12) 

where q~o is an (arbitrary) symmetry direction, ] m l ~< l 
and P7' is an associated Legendre function, related to 
Pl by 

d ~ Pr~(X) ~ "  ( - -  1)m(1 - -  x2)m/2 d ~  Pt(x) (13) 

For reference, we list below the P~' associated 
Legendre functions 

p0(cos0) = �88 + 1) 

P~(cos0) = _ 3sin20 (14) 

p2(cos0) = 3(1 - cos 20) 

For a non-rotating spherical droplet, the l = 2 modes 
are five-fold degenerate 

0)2, m = fD 2 (15) 

If the equilibrium shape is no longer spherical but still 
axisymmetric and the sample does not rotate, the 
frequencies depend on I ml only, and one expects three 
peaks in the spectrum, namely m = 0 ,  _ 1, _ 2 .  A 
rotating and/or not axisymmetric sample will exhibit 
all five peaks. 

In addition to frequency splitting, the frequencies 
are also shifted with respect to Equation 10. The shift 
is proportional to the translational and rotational 
frequencies of the sample and its asphericity. Accord- 
ing to Cummings and Blackburn [16], rotation 
influences only m # 0 modes 

fOr = CO 0 m 1,~ l,~ + ~-f2 (16) 

where f~ is the rotational frequency around the z-axis. 
Translational oscillations affect all frequencies. How- 

ever, Cummings and Blackburn [16] have derived the 
following sum rule 

1 + 2  
f.o i = - ~' m z - 2m z (17) 

s ' - '2  2,~ ?n = -  

w h e r e  m~ is the translational frequency. 

2.3. Image processing 
The oscillations can be detected as variations in the 
shape of the sample. The video camera produces a 
two-dimensional image of the sample which is given 
by the projection of the sample on to a plane normal 
to the viewing direction. 

It is sufficient to assume that the sample is oscil- 
lating at a single frequency. Owing to the ortho- 
gonality of the Legendre functions, contributions from 
different modes can be superimposed linearly. 

For a top view, i.e. looking along the z-axis, the 
circumference of the image at a time, t, is given by 

~ t o p  l,m (% t) = max {Roll + a(t) Rl, m (0, q))] sin 0} 
0 

(18) 

where (p is the viewing direction and 

e(t) = ~o COS(O)/,m t)e-V';  (19) 

is the time-dependent amplitude of the oscillation. 
For small ~o < 1 (a condition that must be satisfied 

anyway in a linearized theory), the above definition 
yields the equatorial cross-section of the sample 

.m , q) (20) 

which for m = 0 is a circle. Note that P~ [cos (u/2)] 
= 0 .  

For a side view, say along the x-axis, one obtains 
similarly 

fiside m t) max {Roll + c(t) 
q~ 

R~,m (0, q~ - %)]  sinq~} (21) 

Here, q~o is not necessarily the viewing direction. As 
before, one obtains for small e < 1 the cross-section 

I "'l,m#Siae(0, t) = R 0 1 + e(t)R~,,~ 0 , ~ -  q)o 

(22) 

Deriving surface tension values from measured fre- 
quency spectra with several peaks requires the identi- 
fication of each cff the peaks with their corresponding 
labels (l, m). This can be done by analysing the shape 
of the oscillating drop. The l = 2 modes are shown in 
Figs 2-4 when viewed from the side. For sake of 
clarity, a large g = + 0.2 has been chosen, which is 
outside the scope of linear theory. It is convenient to 
create binary images choosing a suitable threshold. In 
this case the sample will be displayed white, whereas 
the remainder of the picture will be black. This step 
eliminates the effect of temperature on the signal and 
suppresses any unwanted reflections. Once the binary 
image has been obtained, there exist a number of 
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Side View of Oscillating Sphere o 

2 7 0  9 0  

\ '., \ ' ,  , ' / , :  / 
\ ",.N', , 'Z.; / 270 oo \ ","q, ,Z - ' "  / 

1 8 0  

1'0 o'.s ; o'.s 1:o 
l=2, m=2 mode 

1 8 0  Figure 4 l = 2, m = 2 osc i l l a t ion  o f  a sphe re ,  s ide v i e w  for  e = 0.2, 
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Figure 2 I = 2, m = 0 osc i l l a t ion  o f  a sphe re ,  s ide v i e w  for  s = 0.2, 

0 . 0 ,  - -  0 . 2 .  
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Figure 3 l = 2, m = 1 osc i l l a t ion  o f  a sphe re ,  s ide v i ew  for  ~ = 0.2, 

0 .0 ,  - 0 . 2 .  

methods to extract information from it. One way is to 
determine directly the radius at a suitably chosen fixed 
angle, 0 o. According to Equation 12, the temporal 
change of this quantity directly yields frequency and 
damping. This method mimics the use of slits in the 
conventional measurements [10]. By choosing the 
appropriate angle, one can suppress signals from 

0.0, - 0,2. 

certain modes. For example 

P2 [cos(54.7~ = 0 (23) 

while P7 # 0 for m = 1, 2. The problem with this 
approach is, that the centre of mass of the sample must 
be known; this is the point from which the radius 
vector is to be drawn. If the sample undergoes trans- 
lational oscillations, this point is not fixed and must be 
determined for each frame. 

Another possibility is to use the total number of 
white pixels, i.e. the area of the cross-section, as the 
signal. For a side view the cross-section, Q, is given by 

2fo 2 /')side (f~ dO dr r (24) 
~ l , m  t ~1 ~ -  

which yields upon insertion of Equation 22 and 
linearization 

Q~ide c,, nR2[1  + ~(t) 2- f (  d0 PT' (cos 0) 1 (25) 
l ,m  t v ]  ~ "IT, 

For odd 1 or m the integral vanishes, which again 
constitutes a selection rule. This analysis is insensitive 
to translations of the sample, as long as the whole 
cross-section remains visible. 
When viewing from the top, one obtains 

, o ~ f : ~ f f  'm Q.t, m(t) = d~p dr r 

= nRg [1 + 2a(t)PT'(0)Sm, o] (26) 

This last expression again implies a selection rule. 
If necessary, one can use a more general signal S(t) 

by defining a filter function F(0, r) 

S(t) = 2 dO drr F(O, r) (27) 

In this latter definition, the cross-section is contained 
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as the special case F = 1. It is the strength of image 
processing that one is free to choose any suitable F. 

The frequencies mz, m can be determined by Fourier 
transforming the signal. To obtain the damping, one 
may use the halfwidth, Av, of the frequency peak 
according to the relation 

7 = ~Av (28) 

where Av is the width of the peak at 1/21/2 maximum 
height. This method is only viable if the peaks are well 
resolved and the measuring time, A-c, is much larger 
than the damping time, due to the uncertainty relation 
inherent in Fourier transformation 

AVmi n AT ~ 1 (29) 

Hence, all peaks have a minimum linewidth of the 
order 1/Az. Alternatively, one may obtain at least the 
smallest damping from the time signal directly. Dis- 
carding the initial transient phase, where all modes 
with strong damping die out, the logarithmic decre- 
ment during one period T o yields the damping directly 

lnS(t  + To) - InS(t) 
= - v (30) 

ro 
For practical purposes, it is convenient to square the 
signal before taking the logarithm. 

The coil systems are optimized for maximum effici- 
ency: most metals can be positioned against 10 -z go 
and heated up to 2500~ with only 1.5 kW. By 
switching off the heating field, the power input into 
the sample can be minimized to ~ 10 W, thereby 
allowing undercooling without forced gas cooling of 
the sample. In addition, a short voltage pulse through 
the heating coil can be used to excite the surface 
oscillations. 

TEMPUS is equipped with a two-colour pyrometer 
measuring between 300 and 2500 ~ with a sampling 
rate of 1 MHz. Two video cameras (standard CCIR 
monochrome) offer top and side view. The facility can 
operate under inert purified gas atmosphere (Ar, He) 
and ultra-high vacuum (10 .9 mbar). Due to the coil 
geometry, spherical samples with radius R0 ~< 0.5 cm 
can be processed. 

TEMPUS cannot levitate against 1 g. Therefore, it 
had to be tested during parabolic flights on a KC-135 
airplane. Each parabola provides about 10s of 
10-2go . The original intention was to test the posi- 
tioning capabilities of TEMPUS only. It turned out, 
however, that the time was sufficient to position and 
melt the sample, and to excite surface oscillations. 
An FevsNi2s sample with a melting point of 
T,, = 1550 ~ and 4.2 g mass was used and processed 
in an He atmosphere. 

3. Experiments 
3.1. Levitat ion 
The experiments were carried out using the develop- 
ment model of the TEMPUS facility, an electromag- 
netic levitation facility designed to operate under 
microgravity conditions. It is shown schematically in 
Fig. 5. TEMPUS uses a two-coil, two-frequency con- 
cept which allows variation of the heating (dipole) field 
and the positioning (quadrupole) field independently. 

meter 

ra I 

Ultra-high vacuum 
chamber 

Pumps 

Gas sup 
a Camera 2 

Figure 5 Schematic view of TEMPUS, showing the camera posi- 
tions. 

3.2. Image  p rocess ing  
The images were recorded on a VHS video recorder. 
Standard CCIR-TV uses 25 full frames per second, 
each containing 590 x 600 pixels. One full frame con- 
sists of two half frames (295 x 600). Using all half 
frames, a sample rate of 50 Hz is achieved. According 
to the Nyquist sampling condition [17], the maximum 
frequency that can be resolved is therefore 25 Hz. The 
frequency of the I = 2 mode lies in the region of 20 Hz 
and cannot be detected on full frames. It is therefore 
essential to use video recorders which display all half 
frames. We have used a Panasonic AG7330 EG 
which has half frame by half frame backward and 
forward scanning capability. In the future, a modified 
video camera with a frame rate of up to 500 Hz will be 
used. 

For image acquisition and image processing, the 
Interactive Data Language (1DL)software of RSI | 
was employed. In order to reduce storage require- 
ments, only that section of the images was digitized 
and stored which contains the essential information, 
i.e. the sample. Nevertheless, there is a considerable 
amount of data to be stored, for a 10 s sequence 
approximately 100 Mbyte. 

Owing to the coil and sample holder geometry, the 
limb of the sample was not entirely visible from the 
top, and the poles were not visible from the side. For 
frequency analysis, we used only side views of the 
sample and evaluated either the width of the sample at 
different heights, or the total visible area of the sample. 
The best results were obtained using the area. 

For any choice of filter function, F (Equation 27), 
one obtains a single real number for each frame, 
thereby reducing the amount of data by a factor of 
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10 s. The final result of image processing is therefore a 
real-valued vector of length L = f A t  ~ 500, w h e r e f i s  
the sampling rate and At is the measuring time. This 
time signal is then Fourier transformed to obtain the 
linear frequency spectrum. 

4. Results and discussion 
4.1. Parabolic flight 
We used Equation 25 to obtain the time signal. The 
first 4s  are shown in Fig. 6. In the first 2 s of the 
experiment, the sample is solid and shows no oscil- 
lation. It is then heated above its melting point up to 
1580~ and oscillations are externally excited at 
t ~ 2.5 s. Solidification occurs at t ~ 8 s. 

For  the frequency analysis, only that part of the 
signal was used, which is free from transient disturb- 
ances. The Fourier transform of the time interval from 
t = 3.8-5.8 s is shown in Fig. 7. In addition to some 
low-frequency peaks, which can be attributed to trans- 
lational motion of the sample, it shows a sharp peak 
at v = 17.8 Hz. We attribute this peak to the (l = 2, 
m = 0) mode. This is supported by visual inspection of 
the video recordings. It should also be mentioned that 
the Fourier transform of the first 2 s (solid sample) 
does show the same low-frequency peaks, but none at 
high frequencies. This confirms that those peaks are 
not an artefact of the analysis, but a genuine reflection 
of the oscillations of the liquid sample. 

Inserting the measured frequency into Equation 10 
which for l = 2 reads 

cr = 3 n M v  2 (31) 

where M is the mass of the sample, which in our case 
was M = 4 . 2 g ,  we obtain ~ =  1 .6Nm -1. Values 
reported in the literature [3], are in the range 
1.5-1:8 N m-1.  The relatively low value obtained here 
can be attributed to contamination of the sample 
surface by oxygen. In fact, a post-flight analysis of the 
sample showed an oxygen content of about I00 p.p.m. 
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Ngure 6 Time signal of oscillating sphere. Melting occurs at 
t ~ l . 7 s .  
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Figure 7 Fourier spectrum of oscillating sphere. 
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4.2.  Viscos i ty  m e a s u r e m e n t s  
From the experiment on the KC-135 flight, no vis- 
cosity data could be derived. This is due to several 
limiting factors. Firstly, the experimental apparatus 
and the environment on board the aircraft caused too 
many disturbances on the sample. Secondly, a strong 
d.c. magnetic field was used to damp the translational 
oscillations of the sample. This field, of course, also 
damped the surface oscillations drastically, thereby 
masking any damping due to viscosity. The magnetic 
damping can be estimated as E18] 

~B 2 
r - (32) 

P 

where ~ is the electrical conductivity and 19 is the mass 
density. In order to measure viscosities, this must be 
much less than viscous damping (Equation 11): F ~ 7. 
For typical values, we obtain a tolerable magnetic 
field strength ofB ~ 1 mT, whereas the KC-135 set-up 
had B ~ 50 mT. 

Finally, the measuring time, A; = 2 s, is too short to 
detect a damping constant 1/7 ~ 10 s. 

These problems will be eliminated in the proposed 
experiment for the IML-2 Spacelab-mission [8]. This 
investigation, scheduled for 1993, is intended to yield 
precise data on both surface tension and viscosity for a 
number of interesting metals. 
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